階級作成とDummy変数の作成¶
- いままでの階級作成は、dictを作ってmapさせていた
- 右区間の開閉を指定できる
- 数値の範囲を示す文字列を作成することでmapのようなことができる
- dummy変数便利、SQLを複雑にしないですむ
- おまけにのせたfactorizeは数値しか扱えないライブラリには便利そう
- ただし、numpyとはnanの扱いが少し違うらしい
import numpy as np
import pandas as pd
参考¶
- http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
- http://pandas.pydata.org/pandas-docs/stable/reshaping.html#computing-indicator-dummy-variables
データ¶
np.random.seed(0)
df_for_cut = pd.DataFrame(np.random.randint(1, 99, 1000), columns=["age"])
df_for_cut.tail()
age | |
---|---|
995 | 36 |
996 | 89 |
997 | 50 |
998 | 80 |
999 | 85 |
bin作成¶
bins = list(range(0, 100+1, 10))
bins
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
binのラベル¶
bins_labels = [str(b) + " - " + str(b + 10 - 1) for b in bins[:-1]]
bins_labels
['0 - 9',
'10 - 19',
'20 - 29',
'30 - 39',
'40 - 49',
'50 - 59',
'60 - 69',
'70 - 79',
'80 - 89',
'90 - 99']
df_for_cut["age_group"] = pd.cut(df_for_cut.age, bins=bins)
df_for_cut["age_group_right"] = pd.cut(df_for_cut.age, bins=bins, right=False)
df_for_cut["age_group_label_F"] = pd.cut(df_for_cut.age, bins=bins, labels=False)
df_for_cut["age_group_labels"] = pd.cut(df_for_cut.age, bins=bins, labels=bins_labels)
df_for_cut.tail()
age | age_group | age_group_right | age_group_label_F | age_group_labels | |
---|---|---|---|---|---|
995 | 36 | (30, 40] | [30, 40) | 3 | 30 - 39 |
996 | 89 | (80, 90] | [80, 90) | 8 | 80 - 89 |
997 | 50 | (40, 50] | [50, 60) | 4 | 40 - 49 |
998 | 80 | (70, 80] | [80, 90) | 7 | 70 - 79 |
999 | 85 | (80, 90] | [80, 90) | 8 | 80 - 89 |
df_for_cut.age_group.unique()
[(40, 50], (60, 70], (0, 10], (80, 90], (20, 30], (30, 40], (70, 80], (10, 20], (50, 60], (90, 100]]
Categories (10, object): [(0, 10] < (10, 20] < (20, 30] < (30, 40] ... (60, 70] < (70, 80] < (80, 90] < (90, 100]]
df_for_cut.age_group_label_F.unique()
array([4, 6, 0, 8, 2, 3, 7, 1, 5, 9])
pd.qcut(quantile cut) もあるが、こちらは分位数または分位のリストを指定してするものもある。
qcuted_4 = pd.qcut(df_for_cut["age"], q=4)
qcuted_4.tail()
q = [0, .25, .5, .75, 1]
qcuted_list = pd.qcut(df_for_cut["age"], q=q)
qcuted_list.tail()
Dummy変数¶
dummies = pd.get_dummies(df_for_cut['age_group'], prefix='age_group')
df_for_cut_with_dummies = pd.concat([df_for_cut, dummies], axis=1)
df_for_cut_with_dummies.tail()
age | age_group | age_group_right | age_group_(0, 10] | age_group_(10, 20] | age_group_(20, 30] | age_group_(30, 40] | age_group_(40, 50] | age_group_(50, 60] | age_group_(60, 70] | age_group_(70, 80] | age_group_(80, 90] | age_group_(90, 100] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
995 | 36 | (30, 40] | [30, 40) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
996 | 89 | (80, 90] | [80, 90) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
997 | 50 | (40, 50] | [50, 60) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
998 | 80 | (70, 80] | [80, 90) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
999 | 85 | (80, 90] | [80, 90) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
pd.get_dummies(pd.DataFrame({"a": list("AB"), "b": list("CD")}), prefix=list("ab"))
# Series
# prefixはない, split+expandをさらに加工する必要がなくなる
pd.Series(["a|b|c", "e|fg"]).str.get_dummies()
pd.Series(["a|b|c", "e|fg"]).str.split("|", expand=True)
a_A | a_B | b_C | b_D | |
---|---|---|---|---|
0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
factors = pd.Series(["B", np.nan, "a", np.nan, 123, 0.4, np.inf])
factors
0 B
1 NaN
2 a
3 NaN
4 123
5 0.4
6 inf
dtype: object
おまけ¶
factors.factorize()
(array([ 0, -1, 1, -1, 2, 3, 4]),
Index(['B', 'a', 123, 0.4, inf], dtype='object'))