階級作成とDummy変数の作成

  • いままでの階級作成は、dictを作ってmapさせていた
    • 右区間の開閉を指定できる
    • 数値の範囲を示す文字列を作成することでmapのようなことができる
  • dummy変数便利、SQLを複雑にしないですむ
  • おまけにのせたfactorizeは数値しか扱えないライブラリには便利そう
    • ただし、numpyとはnanの扱いが少し違うらしい
import numpy as np
import pandas as pd

参考

  • http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
  • http://pandas.pydata.org/pandas-docs/stable/reshaping.html#computing-indicator-dummy-variables

データ

np.random.seed(0)
df_for_cut = pd.DataFrame(np.random.randint(1, 99, 1000), columns=["age"])
df_for_cut.tail()
age
995 36
996 89
997 50
998 80
999 85

bin作成

bins = list(range(0, 100+1, 10))
bins
 [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

binのラベル

bins_labels = [str(b) + " - " + str(b + 10 - 1) for b in bins[:-1]]
bins_labels

    ['0 - 9',
     '10 - 19',
     '20 - 29',
     '30 - 39',
     '40 - 49',
     '50 - 59',
     '60 - 69',
     '70 - 79',
     '80 - 89',
     '90 - 99']
df_for_cut["age_group"] = pd.cut(df_for_cut.age, bins=bins)
df_for_cut["age_group_right"] = pd.cut(df_for_cut.age, bins=bins, right=False)
df_for_cut["age_group_label_F"] = pd.cut(df_for_cut.age, bins=bins, labels=False)
df_for_cut["age_group_labels"] = pd.cut(df_for_cut.age, bins=bins, labels=bins_labels)
df_for_cut.tail()
age age_group age_group_right age_group_label_F age_group_labels
995 36 (30, 40] [30, 40) 3 30 - 39
996 89 (80, 90] [80, 90) 8 80 - 89
997 50 (40, 50] [50, 60) 4 40 - 49
998 80 (70, 80] [80, 90) 7 70 - 79
999 85 (80, 90] [80, 90) 8 80 - 89
df_for_cut.age_group.unique()

    [(40, 50], (60, 70], (0, 10], (80, 90], (20, 30], (30, 40], (70, 80], (10, 20], (50, 60], (90, 100]]
    Categories (10, object): [(0, 10] < (10, 20] < (20, 30] < (30, 40] ... (60, 70] < (70, 80] < (80, 90] < (90, 100]]
df_for_cut.age_group_label_F.unique()

    array([4, 6, 0, 8, 2, 3, 7, 1, 5, 9])

pd.qcut(quantile cut) もあるが、こちらは分位数または分位のリストを指定してするものもある。

qcuted_4 = pd.qcut(df_for_cut["age"], q=4)
qcuted_4.tail()

q = [0, .25, .5, .75, 1]
qcuted_list = pd.qcut(df_for_cut["age"], q=q)
qcuted_list.tail()

Dummy変数

dummies = pd.get_dummies(df_for_cut['age_group'], prefix='age_group')
df_for_cut_with_dummies = pd.concat([df_for_cut, dummies], axis=1)
df_for_cut_with_dummies.tail()
age age_group age_group_right age_group_(0, 10] age_group_(10, 20] age_group_(20, 30] age_group_(30, 40] age_group_(40, 50] age_group_(50, 60] age_group_(60, 70] age_group_(70, 80] age_group_(80, 90] age_group_(90, 100]
995 36 (30, 40] [30, 40) 0 0 0 1 0 0 0 0 0 0
996 89 (80, 90] [80, 90) 0 0 0 0 0 0 0 0 1 0
997 50 (40, 50] [50, 60) 0 0 0 0 1 0 0 0 0 0
998 80 (70, 80] [80, 90) 0 0 0 0 0 0 0 1 0 0
999 85 (80, 90] [80, 90) 0 0 0 0 0 0 0 0 1 0
pd.get_dummies(pd.DataFrame({"a": list("AB"), "b": list("CD")}), prefix=list("ab"))

# Series
# prefixはない, split+expandをさらに加工する必要がなくなる
pd.Series(["a|b|c", "e|fg"]).str.get_dummies()
pd.Series(["a|b|c", "e|fg"]).str.split("|", expand=True)
a_A a_B b_C b_D
0 1 0 1 0
1 0 1 0 1
factors = pd.Series(["B", np.nan, "a", np.nan, 123, 0.4, np.inf])
factors

    0      B
    1    NaN
    2      a
    3    NaN
    4    123
    5    0.4
    6    inf
    dtype: object

おまけ

factors.factorize()

    (array([ 0, -1,  1, -1,  2,  3,  4]),
     Index(['B', 'a', 123, 0.4, inf], dtype='object'))