from_string

In [14]:
import pandas as pd
import numpy as np
import io

def from_string(_str, **kwargs):
    # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.from_csv.html
    return pd.DataFrame.from_csv(io.StringIO(_str), **kwargs)

_csv = """a,b,c
1,2,3
4,5,6
"""
In [4]:
from_string(_csv)
Out[4]:
b c
a
1 2 3
4 5 6
In [5]:
from_string(_csv, index_col=None)
Out[5]:
a b c
0 1 2 3
1 4 5 6
In [6]:
from_string(_csv[1:])
Out[6]:
b c
1 2 3
4 5 6
In [7]:
pd.read_csv(io.StringIO(_csv))
Out[7]:
a b c
0 1 2 3
1 4 5 6
In [9]:
import pyperclip

def from_clipboad(**kwargs):
    return from_string(pyperclip.paste(), **kwargs)
In [11]:
pyperclip.copy(_csv)
from_clipboad(index_col=None)
Out[11]:
a b c
0 1 2 3
1 4 5 6
In [12]:
pyperclip.copy(_csv)
pd.read_clipboard(sep=",")
Out[12]:
a b c
0 1 2 3
1 4 5 6
In [15]:
import string

df_wide = pd.DataFrame(
    np.random.random_integers(1, size=(1, len(string.ascii_letters))),
    columns=list(string.ascii_letters))

with pd.option_context('display.max_columns', 10):
    print(pd.options.display.max_columns)
    print(df_wide)

print(pd.options.display.max_columns)
print(df_wide)

10
   a  b  c  d  e ...  V  W  X  Y  Z
0  1  1  1  1  1 ...  1  1  1  1  1

[1 rows x 52 columns]
20
   a  b  c  d  e  f  g  h  i  j ...  Q  R  S  T  U  V  W  X  Y  Z
0  1  1  1  1  1  1  1  1  1  1 ...  1  1  1  1  1  1  1  1  1  1

[1 rows x 52 columns]
In [ ]: